ชื่อโครงการ สิ่งปรับปรุงดินชนิดอินทรีย์ที่มีคุณภาพสูงสำหรับการผลิตพริกไทย

ผู้วิจัย นางสาวธัญญูกานต์ เซ้งเครือ

าเทคัดย่อ

การศึกษาผลของการใช้ปุ๋ยหมักมูลไส้เดือนดินและวัสดุปรับปรุงดินอินทรีย์เพื่อการผลิตพริกไทย ดำเนินการศึกษาในแปลงพริกไทยในพื้นที่จังหวัดจันทบุรี เนื่องจากเป็นจังหวัดที่มีพื้นที่ปลูกมากที่สุดใน ประเทศ และเป็นพืชบ่งชี้ทางภูมิศาสตร์ของจังหวัดจันทบุรี วัตถุประสงค์ของการทดลองครั้งนี้เพื่อ ๑) ศึกษา ผลของการใช้มูลใส้เดือนดินและวัสดุปรับปรุงดินในการผลิตพริกไทย ๒) ศึกษาผลของการใช้มูลใส้เดือนดิน และวัสดุปรับปรุงดินต่อคุณภาพดินในแปลงพริกไทย วางแผนการทดลองแบบสุ่มสมบูรณ์ภายในบล็อกจำนวน ๗ ตำรับการทดลอง ๓ ซ้ำ โดยมีตำรับการทดลอง ดังนี้ ๑) ตำรับควบคุม ๒) ปุ๋ยหมักสูตรเกษตรกร ๓) ปุ๋ย หมัก ๔) ปุ๋ยหมักมูลไส้เดือนดิน ๕) ถ่านชีวภาพ ๖) ปุ๋ยหมักผสมถ่านชีวภาพ ๗) ปุ๋ยหมักมูลไส้เดือนดินผสมถ่าน ชีวภาพ จากผลการวิเคราะห์วัสดุปรับปรุงดิน พบว่า ปริมาณอิทรียวัตถุในวัสดุปรับปรุงดินแต่ละชนิดมีค่า แตกต่างกัน โดยปุ๋ยหมักมีปริมาณอินทรียวัตถุสูงสุดคือ ๔๔.๘๘ เปอร์เซ็นต์ รองลงมาคือปุ๋ยหมักมูลใส้เดือนมี ค่าที่เท่ากับ ๔๒.๘๐ เปอร์เซ็นต์ ความเป็นกรดด่างทุกวัสดุปรับปรุงดินมีค่าอยู่ในระดับปานกลางคือ ๖.๓๔-๗.๖๕ ปริมาณออกกานิคคาร์บอนในปุ๋ยหมักให้ค่าสูงสุดคือ ๒๖.๐๓ เปอร์เซ็นต์ รองลงมาคือ ปุ๋ยหมักมูล ไส้เดือนดินมีค่าเท่ากับ ๒๔.๘๓ เปอร์เซ็นต์ ค่าการนำไฟฟ้าในวัสดุปรับปรุงดินทุกชนิดมีค่าไม่เกินมาตรฐานปุ๋ย อินทรีย์คืออยู่ระหว่าง ๐.๔๔-๒.๗๙ เดซิซีเมนต์ต่อเมตร ปริมาณไนโตรเจนทั้งหมดในมูลไส้เดือนดินมีค่าสูงสุด คือ ๑.๖๕ เปอร์เซ็นต์ รองลงมาคือ ปุ๋ยหมักมีค่า ๑.๕๗ เปอร์เซ็นต์ ปริมาณฟอสฟอรัสทั้งหมดในมูลไส้เดือน ดินมีค่าวสูงสุด คือ ๐.๙๒ เปอร์เซ็นต์ รองลงมาคือ ปุ๋ยหมัก มีค่า ๐.๘๐ เปอร์เซ็นต์ ปริมาณโพแทสเซียม ทั้งหมดในปุ๋ยหมักมีค่าสูงสุดคือ ๑.๔๔ เปอร์เซ็นต์ รองลงมาคือ ปุ๋ยหมักผสมถ่านชีวภาพมีค่า ๑.๑๙ เปอร์เซ็นต์ ดำเนินการใส่วัสดุปรับปรุงดินต้นฤดูเมื่อเดือนเมษายน ๒๕๖๕ และเก็บผลผลิตของพริกไทยในช่วงเดือน กุมภาพันธ์ - มีนาคม ๒๕๖๖ ผลจากการวิเคราะห์สมบัติดินทั้งก่อนและหลังการทดลอง พบว่า ความ หนาแน่นดินก่อนการทดลองมีค่าไม่แตกต่างกันทางสถิติ คืออยู่ระหว่าง ๑.๓๘-๑.๕๓ กรัมต่อลูกบาศก์ เซนติเมตร ความหนาแน่นดินหลังการใส่วัสดุปรับปรุงดินตำรับที่ใส่ถ่านชีวภาพมีค่าต่ำสุดคือ ๑.๓๔ กรัมต่อ ลูกบาศก์เซนติเมตรและต่ำไม่ต่างจากตำรับที่ใส่ปุ๋ยหมักมูลไส้เดือนดินผสมถ่านชีวภาพ อย่างมีนัยสำคัญทาง สถิติ ซึ่งค่าความหนาแน่นดินที่ต่ำนี้แสดงถึงความโปร่งร่วนซุยของดินที่ดี สำหรับสมบัติอื่นๆ ของดิน ได้แก่ ความเป็นกรดด่าง ปริมาณอินทรียวัตถุ ค่าการนำไฟฟ้า ปริมาณฟอสฟอรัสที่เป็นประโยชน์ ปริมาณ โพแทสเซียมที่เป็นประโยชน์ให้ค่าที่ไม่แตกต่างกันทางสถิติทั้งก่อนและหลังการทดลอง ข้อมูลผลผลิตพริกไทย ตำรับที่ให้ผลผลิตสูงสุดคือ วิธีการของเกษตรกร มีค่าเท่ากับ ๔,๙๔๕.๕๘ กรัม/ต้น และสูงไม่ต่างจากการใส่ปุ๋ย หมักมูลใส้เดือนดินผสมถ่านชีวภาพที่มีค่าเท่ากับ ๔,๖๙๖.๘๘ กรัมต่อต้น สรุปได้ว่า การใช้ปุ๋ยหมักมูลใส้เดือน ้ดินร่วมกับถ่านชีวภาพช่วยให้ผลผลิตพริกไทยของเกษตรกรมีค่าสูงไม่แตกต่างจากวิธีการของเกษตรกร แต่มี ผลด้านคุณภาพดินทางกายภาพคือส่งเสริมให้เกิดความร่วนซุยในดินสูงขึ้นซึ่งหมายถึงการยกระดับคุณภาพดิน ให้เกิดการใช้ประโยชน์ได้อย่างยั่งยืนสืบไป

คำสำคัญ: มูลไส้เดือนดิน, ปุ๋ยหมัก, ถ่านชีวภาพ, วัสดุปรับปรุงดินอินทรีย์, พริกไทย

ABSTRACT

The effects of vermicompost and organic amendments for black pepper production. The research was carried out in Chanthaburi province which the largest black pepper planting area and was a geographical indication plant of Chanthaburi Province. The objectives of this experiment were to a) study the effect of using vermicompost and organic soil amendments in black pepper production; b) to study the effects of using vermicompost and organic soil amendments on soil quality in black pepper plots. A completely randomized block design ๗ treatments with a replications, the following experimental regimens: a) control regimen b) farmer's compost ๓) compost manure ๔) vermicompost ๕) biochar ៦) compost ៧) Vermicompost mixed with biochar. On the result of organic soil amendments was found that the amount of organic matter in each type of soil amendment was significantly different. Compost had the highest organic matter content at ๔៤.๘๘ percent, followed by vermicompost at ಡಲ.ಡಂ percent. The pH of all soil amendments was moderate at ៦.៣៤-៧.៦៥ still within the organic fertilizer standards. Compost gave the highest value of organic carbon at ๒๖.๐๓ percent, followed by vermicompost at ๒๔.๘๓ percent. The electrical conductivity of all soil amendments was not higher than the organic fertilizer standard, which was between o.๔๔-๒.๗๙ deci-cement per meter. The total nitrogen had the highest content in vermicompost at ๑.๖๕ percent, followed by compost at ๑.๕๗ percent. The total phosphorus in vermicompost was highest at o.ಡಿ percent, followed by compost was o.ಡo percent. The total potassium in compost was highest at o.cc percent, followed by o.oc percent in biochar mixed with compost. Soil amendment was applied at the beginning of the rain season in April სის and the yield of black pepper was collected during February-March სისთ. The results on soil properties found that the soil bulk density before the experiment was not statistically different between ๑.៣๘-๑.๕๓ ९/cm[®]. After applied the soil amendments, the best treatment was biochar at o.mc g/cm^m and was not significantly different from vermicompost mixed with biochar. For other properties of the soil, including pH, organic matter, electrical conductivity, available of phosphorus and available of Potassium were not statistically different both before and after adding organic soil amendment. The yield of black pepper gave the highest on the farmer's compost treatment at ಪ್ರನಡ್ಡಿ ಜಿಡ g/plant and was not significantly different from the vermicompost mixed with biochar at ๔,៦ ៧៦.៨៨ ៧/plant. In conclusion, although used vermicompost mixed with biochar gave the highest yields of black pepper not different from farmers' compost. However, it has an effect on physical properties to promote higher soil porosity which raises the quality of the soil for sustainable agriculture.

Keywords: Vermicast, Compost, Biochar, Organic Amendment, Block Pepper